新着情報

Category:微分幾何セミナー

微分幾何学火曜セミナー(10月30日)

 下記の日程で微分幾何学火曜セミナーを開催いたしますので、興味がございます方は是非ご参加下さい。
(本セミナーは大学院科目「数学フロンティア」対象セミナーです。)

日時: 10月 30日(火) 15:15 〜 16:45
場所 : 筑波大学 自然系学系 D棟 D509教室
講演者: 楯 辰哉  氏 (東北大学大学院理学研究科)
題目:周期的ユニタリ推移作用素の局在化
アブストラクト:
近年コンピュータサイエンスや量子シミュレーションなどの分野において,量子ウォークという,ランダムウォークの量子論的類似と思われる概念が話題になり利用されている.量子ウォークとはユニタリ作用素によって定義される確率分布をさすが,その時間無限大での挙動は通常のランダムウォークと大きく異なる.その違いの一つとして簡単に局在化が起こることが挙げられる.本セミナーでは,量子ウォークやその一般化である周期的ユニタリ推移作用素とその局在化について説明した後,小松尭氏(横浜国大)との共同研究で得られた,高次元におけるグローバー型と言われる量子ウォークの局在化について解説する.

筑波大学微分幾何学火曜セミナー

筑波大学微分幾何学火曜セミナー
日時:4月17日 (火) 15:15 ~ 16:45
場所:D509
講演者:Francisco Martin(University of Granada)
題目:Translating graphs for the MCF in Euclidean space
Abstract: A translator is a surface in $\mathbb{R}^3$ that (up to a tangential diffeomorphism) moves  with velocity $v=(0,0,-1)$ by Mean Curvature Flow. Equivalently, the mean curvature at each  point is $H= (0,0,-1)^{\perp}.$ Besides vertical planes, one of the simplest examples of complete translators is the grim reaper cylinder. In this talk we will describe several existence and uniqueness results for complete translators which are graphs over planar domains. This is a joint work with D. Hoffman, T. Ilmanen and B. White.

微分幾何学火曜セミナー(7月25日)

日時:7月25日(火)15時15分から(16時45分頃まで)

場所:筑波大学自然系学系棟D棟 5階 D509

講演者:櫻井陽平氏(筑波大学)

講演題目:1-重み付きRicci曲率の下からの有界性とエントロピーの凸性について

講演要旨:
 重み付きRicci曲率はRicci曲率のある種の一般化であり,重み付きRiemann多様体の振る舞いを制御する.重み付きRicci曲率はあるパラメーターを備えているが,従来はそのパラメーターが多様体の次元以上の場合が主な研究対象であった.しかし最近では,多様体の次元未満の場合に関する研究も徐々に行われつつある.
 本講演では重み付きRicci曲率のパラメーターが多様体の次元未満の場合,特に1の場合を取り扱う.このとき,重み付きRicci曲率がある関数で下から押さえられることと,Wasserstein空間上のエントロピーがLott-Villani,Sturm型の凸性を満たすことが同値であることを説明する.さらにその同値性から導かれるBrunn-Minkowski型不等式や関数不等式を紹介する.

微分幾何学火曜セミナー(6月17日)

日時: 2014年6月17日(火) 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の四元数旗多様体の交叉の構造

概要: 今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果に基いています。2012年5月に火曜セミナーで「複素旗多様体内の実旗多様体の交叉の構造」という題名で講演をしました。今回の話はその続きです。前回の講演で定義した複素旗多様体内の対蹠集合の概念に基いて、複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の四元数旗多様体同士の交叉が対蹠集合になることを証明します。前回同様これもコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。

微分幾何学火曜セミナー (5月13日)

日時: 2014年5月13日 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎 博之 (筑波大学)
タイトル: 複素Grassmann多様体の正則等長変換の不動点集合と二つの実形の交叉

概要: 今回の発表内容は田中真紀子さん井川治さんとの共同研究の結果にもとづいています。
複素Grassmann多様体の正則等長変換全体の単位連結成分に含まれる変換の不動点集合を記述し、二つの実形の交叉と正則等長変換の不動点集合の関係を明らかにします。これにより、交叉が離散的のときに対蹠集合になるという田中真紀子さんとの共同研究の結果の別証明が得られます。