Category:代数セミナー
代数特別セミナー
Abstract: Cohomology is bivariant, which means that to a morphism f it associates not only a pullback map f^*, but also (under certain conditions) an Umkehr map in the opposite direction. These maps satisfy a "push-pull" or "base change" identity. Everyone knows that this implies that cohomology can be thought of as a functor out of a certain category CORR of "correspondences", whose morphisms are "rooves" and whose composition law is defined by taking a fibre product of kernels.
数学特別セミナー(金久保 有輝 氏)
日時:2016年11月4日 (Fri) 15:30 ~ 16:30
場所:自然系学系D棟814号室
タイトル:Cluster variables on double Bruhat cells of classical groups and crystal bases
アブストラクト:古典群 $G$ (=$SL_{r+1}(\mathbb{C})$, $SO_{2r+1}(\mathbb{C})$, $Sp_{2r}(\mathbb{C})$, $SO_{2r}(\mathbb{C})$) の部分群やセルを適当に選ぶと, それらの上の座標環は, クラスター代数という代数構造を持つことが知られている. 例えば冪単部分群 $N$ ($=$ $G$ の元で, 上三角行列からなるもののなす群) を考えると, 座標環 $\mathbb{C}[N]$ は, 双対標準基底と呼ばれる重要な基底を持ち, これは「適当な2つの基底を掛け算すると, 他の基底の二項和になる」という組み合わせ論的な性質を持っている. %標準基底は, リー環 Lie$(G)$ や, その量子群の表現論の中で生まれた基底である. 一方, $G$ は $G^{u,v}$ という2つのワイル群の元 $u$, $v$ でパラメトライズされるセルに分割される. 座標環 $\mathbb{C}[G^{u,v}]$ を考えると, こちらにも双対標準基底と似た性質を持つ生成元が構成される. そこで, Fomin, Zelevinsky の両氏は, リー環論や座標環理論の中で重要なこれらの生成元の性質を抽象化し, クラスター代数 (cluster algebra) を導入した. 即ち, 上で述べたような組み合わせ論的な生成元を, クラスター変数 (cluster variables) と呼び, そのような生成元を持つ代数のことをクラスター代数と定めたのである.
最近, 上智大学の中島俊樹教授との共同研究で, 座標環 $\mathbb{C}[G^{e,v}]$ におけるクラスター変数と, 量子群の表現論の中に現れる結晶基底 (crystal base) との関係が明らかになった. 結晶基底は、量子群の表現の構造を大まかに明らかにしてくれる骨組みのようなもので, Young盤や paths, そして Laurent 単項式など, 様々な方法で書き表される. それらの豊富な表示方法によって, 表現の構造を組み合わせ論的に調べることができるようになるのである. 本講演では, 具体例を交えながらいくつかの用語を解説し, 主結果を説明する.
数学特別セミナー
日時:2016年4月21日 (Thu) 10:00 ~ 12:00
場所:自然系学系D棟814号室
タイトル:
Equivalences between logarithmic weight modules via $¥mathcal{N}=2$ coset constructions
アブストラクト:
本講演では,Feigin-Semikhatov-Tipuninによって与えられた`$\mathcal{N}=2$ 超対称コセット構成の逆'を利用して,非ユニタリな場合にも適切な加群圏の間にアーベル圏としての圏同値が得られることを解説する.またその応用として,$\mathcal{N}=2$超Virasoro代数の表現の指標を$A_{1}^{(1)}$型アフィンLie代数の表現の指標で表す公式を与える.
数学特別セミナー: 天野通大 氏 (7月9日)
場所: 自然学系棟 D509 セミナー室
講演者: 天野 通大 氏 (筑波大付属大塚)
タイトル: 加法群スキームから twisted torus への変形群スキーム
概要: 多くの研究により乗法群の直積のデサントが考察されている. 我々は, 円分拡大に伴うガロア群の作用による乗法群スキームのデサントの手法を, 加法群から乗法群への変形群スキームへ適用する. その結果, 加法群から twisted torus への変形群スキームが構成される. こうした群スキームは Waterhouse-Weisfeiler により既に与えられているが, 我々の構成法は2次デサントによる新しい手法である. この手法を一般化することにより, 様々な群スキームの構成が期待できる. その展望を含め, 扱うデサントの手法や登場する群スキームの説明も丁寧に行いたい.
Tsukuba Mini-Workshop on Hopf Algebras (2月17日)
日時: 2月17日(月) 10:30-18:00
場所: 自然系学系棟 D509 セミナー室
10:30-12:00 津野 祐司 (千葉工大)
Galois objects and cleft objects for free Hopf algebras
13:30-15:00 増岡 彰 (筑波大)
Cleftness results on universal quantum groups
15:15-18:00 ディスカッション
世話人 増岡 彰
代数セミナー(2月12日)
講演者:Prof.Wang Qing(Xiamen University)
日時:2月12日(水) 16:00~17:00
場所:自然系学系棟 D814 セミナー室
タイトル:Module categories for toroidal Lie algebra
Abstract In this talk,I will present some recent work on toroidal Lie algebra. We use basic formal variable techniques to study certain categories of modules for the toroidal Lie algebra τ. More specifically,we define and study two categories ετ and cτ of τ-modules using generating functions,where ετ is proved to contain the evaluation modules while cτ contains certain restricted τ-modules,the evaluation modules,and their tensor product modules. Furthermore,we classify the irreducible integrable modules in categories ετ and cτ. This is a joint work with Hongyan Guo and Shaobin Tan.
ご来聴をお待ちしています。
森田純(4371)
代数特別セミナー(2月5日)
場所 自 D814
講演者 Bo TAN 氏 華中科技大学教授
タイトル The graph of continuous function and packing dimension.
連絡先 秋山茂樹 (4395)
代数セミナー (11月25日)
場所: 自然系学系棟 D814
数学特別セミナー (10月15日)
場所: 自然系学系棟 D814 セミナー室
講演者: 梅村 浩 先生 (名大)
タイトル: 非余可換 Picard-Vessiot 理論の試み
概要:
qsi-体上の線形方程式については、Hardouin の Picard--Vessiot 理論がある。増岡と柳川誠はこの理論が余可換な理論であることを解明した。余可換の条件を外すとどうなるのか、例を通して考える。
ご来聴をお待ちしています。
天野勝利・増岡彰
代数特別セミナー (10月2日)
日程: 2013年10月2日
時間: 10:00~12:00
15:00~17:00
場所: 自然系学系棟 D814
フランスとカナダから二名の数学者が来訪されるのを機に、下記の要領で合同セミナーを開催いたします。興味のある方は遠慮なく御参加ください。
講演者: Bertrand Rémy 氏 (Lyon 大学・Prof. )
題目: Kac-Moody groups: simplicity and finiteness properties (results and questions)
10:00~11:30 講演&質問
11:30~12:00 討論
講演者: Robert Moody 氏 (Victoria 大学・Prof. )
題目: Simple Lie groups and Gaussian cubature
15:00~16:30 講演&質問
16:30~17:00 討論