ブログ

カテゴリ:談話会

数学域談話会(11月28日)

11月の談話会は退職された坂井公先生をお招きしてお話を伺います。
たくさんの方のご参加をお待ちしています。

詳細は以下の通りです。
日時:11月28日(木)15:30~17:00 (ティータイムは15時から)
場所:1E205 (ティータイムは1E204にて)
講演者:坂井公先生
講演タイトル:組合せゲームによる数論  
アブストラクト:タイトルから誤解を受けることが無いように最初に断っておきますが,おそらく通常の数論研究に参考になるようなことは何もありません。組合せゲームの中には,数としてとらえることで,その性質や必勝法が解析しやすくなるものが多々あり,その数理(病理?)についての話です。Conwayの超現実数と呼ばれるもので,実数全体に似た順序構造を作りますが,無限大・無限小などを含む奇妙な体になります。

連絡先:竹内耕太(kota@math.tsukuba.ac.jp)

数学域談話会(11月29日 薄葉季路氏)

11月の談話会を以下のように企画しています。
ぜひご参加ください。

 日時:11月29日(木) 15時00分~17時00分
 場所:自然学系棟 D棟 509

 講演者:薄葉 季路氏(早稲田大学基幹理工学部)
 題目:数学基礎論と位相空間論のコンパクト

詳細についてはhttps://nc.math.tsukuba.ac.jp/colloq/をご覧ください。

数学域談話会(4月19日 三原朋樹氏、蓮井翔氏)

4月の談話会を以下のように企画しています。
ぜひご参加ください。

 日時:4月19日(木) 13時30分~16時30分
 場所:自然学系棟 D棟 509

 第一部(13時30分~15時)
 講演者:三原朋樹氏(筑波大学数理物質系数学域)
 題目:空間と関数の双対の観点から見る非可換ポントリャーギン双対の整数論との関わり

 第二部(15時~16時30分)
 講演者:蓮井翔氏(筑波大学数理物質系数学域)
 題目:擬トーリック多様体の分類および関連する諸結果について

詳細についてはhttps://nc.math.tsukuba.ac.jp/colloq/をご覧ください。

数学域談話会(11月16日 小野 薫氏)

11月の談話会を以下のように企画しています。
ぜひご参加ください。

 日時:11月16日(木)15時半〜17時
   (15時からティーパーティ)
 場所:自然学系棟 D棟 509

 講演者:小野 薫氏(京都大学 数理解析研究所)

 題目:Floer 理論とそのいくつかの応用の紹介

詳細についてはhttps://nc.math.tsukuba.ac.jp/multidatabases/multidatabase_contents/detail/230/186ccb6fd1079d68ba7e27cc3140346f/-476/#_476をご覧ください。

数学域談話会(10月26日 青嶋誠氏 日本統計学会賞受賞記念)

10月の談話会を以下のように企画しています。今回は青嶋教授の第22回日本統計学会賞受賞を記念して開かれます。ぜひご参加ください。

 日時 :10月26日(木)15時半~17時
      (15時からティーパーティー)
 場所 : 自然学系棟 D棟 509
 
 講演者: 青嶋 誠氏(筑波大学 数理物質系数学域)

 題目:高次元統計解析:理論・方法論とその周辺(再び)

詳細についてはhttps://nc.math.tsukuba.ac.jp/multidatabases/multidatabase_contents/detail/230/806e5ad69f489376c33fae7489dde044/-476/#_476をご覧ください。

数学域談話会(7月20日)


 7月の談話会を以下のように企画しています.
 興味のある方はぜひご参加ください.

 日時 :7月20日(木)15時半~17時
      (15時からティーパーティー)
 場所 : 自然学系棟 D棟 509
 
 講演者: 桑山 秀一氏(筑波大学 生命環境系)

 題目:細胞集団運動におけるソリトン現象の発見

 

数学域談話会(6月1日)


 今年度はじめの 数学域談話会を 以下のように企画しています.
 ぜひご参加ください.

 日時: 6月1日 15時半~17時(15時よりティーパーティー)
 場所: 自然学系棟 D棟 509
 講演者: 筧 知之氏 (筑波大学数理物質系数学域)
 題目: 平均値作用素について

数学域 談話会

12月の談話会を以下のように企画いたしました.奮ってご参加ください.

日  時: 12月 22日(木) 15時30分~17時 (15時からティータイム) 

場  所: 自然学系棟D棟  509 教室 


講 演 者:植田 一石 氏 (東京大学 数理科学研究科)

題  目: Grassmann多様体上の完全可積分系とミラー対称性

概  要: 
Grassmann多様体は複素幾何やシンプレクティック幾何学が表現論と交差する重要な対象であり、数学の進歩とともにその研究は深化を繰り返している。この講演では、Gromov-Witten不変量や量子コホモロジー、ミラー対称性、完全可積分系、クラスター代数などとGrassmann多様体の関係の一端を紹介したい。

数理物質融合科学センター 第6回 数理連携サロン

筑波大学数理物質融合科学センター (CiRfSE) では、分野横断的な研究交流の一助となることを目指し、互いの研究分野の相互理解を推進する場として数理連携サロンを開催します。

今回は「人工知能」をキーワードにしています。興味のある方はお気軽にご参加ください。

日時・場所
2016年12月5日(月)  15:15~17:15
筑波大学第一エリア 自然系学系D棟 D509セミナー室

プログラム
15:45~15
:45
「大規模固有値解析エンジンの開発とそのシミュレーション・データ解析
への応用」
櫻井鉄也(筑波大学 システム情報系)

16:00-16:30
 「限量記号消去を推論器とする数学入試問題の自動解答器」
岩根秀直((株)富士通研究所/国立情報学研究所)

16:45-17:15
 「大学入試の数列問題を解く自動推論アルゴリズム」
照井 章(筑波大学 数理物質系)

14 時 45 分から 15 時 15 分までと 17 時 15 分 から 18 時までは tea time を設けます。他分野の研究者と気軽に交流できる機会です。ご自由にご歓談下さい。

お問い合わせ先
筑波大学数理物質融合科学センター (CiRfSE)
数理物質系数学域 青嶋 誠 (aoshima@math.tsukuba.ac.jp)

筑波大学数学談話会 (1月14日)

日時:1月14日(木曜日), 15:30--17:00 (15:00 より tea)

場所:自然系学系 D棟 509

講演者:辻井 正人 氏 (九州大学大学院数理学研究院)

題目:古典力学系の準古典解析

概要:測地流などの(平衡点を持たない双曲的な)古典力学系の性質を相空間上の関数への作用を通して解析をすることを考える.
計量を適当に調整すれば流れは単位速度で進むと見ることができるので,作用を「流れ方向のフーリエ成分」毎に分解することは(技術的には多少問題があるが)有効な考えである.さらに,周波数を無限大にする極限の解析が重要になり,そこに準古典解析の手法が応用されることは(名前に由来する不自然さを除けば)自然である.興味深いのは,解析の結果として古典力学系の中にその「量子化」が自然に埋め込まれているように見えることである.この「量子化」についてどのように考えるべきか私にはまだよく分からないが,興味深いと思われるので講演で話をしたい.

筑波大学数学談話会 (11月26日)

日時:11月26日(木曜日), 15:30--16:30 (15:00 より tea)

場所:自然系学系 D棟 509

講演者:桑原 敏郎 氏 (筑波大学)

題目:超局所微分作用素によって構成される非可換代数と表現論

概要:
非常に基本的な例を基に、超局所微分作用素を用いてシンプレクティック多様体を量子化(非可換変形)して得られる代数とその表現論について簡単に解説します。このような代数には(古典的な)半単純リー代数の普遍包絡環のほか、有理チェレドニック代数や有限W代数がありますが、多様体の基本的な性質が量子化された代数にまで持ち上がるなどの良い性質を持ちます。本講演ではそのような点に触れるとともに、最近増えている正標数の場合や、q-類似、頂点代数での類似についても簡単に紹介しようと思います。

筑波大学数学談話会 (5月21日)

日時: 5月21日 (木曜日)、 15:30--16:30 (15:00より tea)

場所: 自然系学系 D棟 509

講演者: 井ノ口 順一 氏 (筑波大学)

題目: 可積分幾何・差分幾何

概要: 無限可積分系とよばれている非線型偏微分方程式の多くが, 微分幾何に密接に関わることが知られている. 無限可積分系を構造方程式にもつ曲線や曲面の研究は「可積分幾何」とよばれるようになった. 本講演では, 現在,可積分幾何で関心をもたれている研究対象の中から, 「3次元幾何 (Thurson 幾何)における極小曲面の構成」について解説する(時間が許せば曲線の差分幾何にも触れたい).

筑波大学数学談話会 (12月4日)

日時: 12月4日(木曜日)、15:30--17:00 (15:00 より tea )

場所: 自然系学系 D棟 509

講演者: 岩根 秀直 氏 (国立情報学研究所)

題目: 計算機が数学試験問題を解く - 数式処理編

概要: 国立情報学研究所を中心として進めている「ロボットは東大に入れるか」プロジェクトでは, 「人工知能」としてまとめられる諸技術に対する総合的ベンチマークとして, 様々な科目の大学入試問題を計算機で直接解くことに挑戦している.

我々は数学入試問題に取り組んでおり, 開発中のシステムは問題文を入力として, 自然言語処理により構築された一階述語論理式を数式処理により問題を解く方法をとっている. 本講演では, 数学入試問題の数式処理による解法と, 自然言語処理との接合による課題解決方法について紹介する.

筑波大学数学談話会 (11月20日)

講演者: 中島 誠 氏 (筑波大学)

題目: 生物の人口模型と(確率)偏微分方程式

概要: 数学では生物の個体数の時間変動を表すものとして有名なものでは微分方程式で現れるLogistic方程式やLotka-Volterra方程式などがある. 確率論においてもGalton-Watson過程という個体数の変動のランダム性を考慮して模型がある. さらに個体に空間の動きを加えた模型を考え, そこから自然な極限として現れる確率過程は非線形熱方程式や確率偏微分方程式との関連が知られている. 今回は時空間にランダムな要素を含めた生物の人口模型を考えたとき, 関連する非線形熱方程式や確率熱方程式はどのような影響を受けるのかについて話す.

筑波大学数学談話会 (10月16日)

日時:10月16日(木曜日)、15:30--16:30 (15:00よりお茶の時間)


場所:自然系学系棟D509


講演者:金子 元 氏 (筑波大学)


講演題目:Nonzero digitが少ないベキ級数の値の超越性および代数的独立性


概要:ほとんどすべての複素数が超越数であるにもかかわらず, 具体的に与えられた複素数が超越数であることを示す事は一般に難しい. 例えば, $$e+\pi$$は超越数であると予想されているが, まだ証明されていない. 関数の値の超越性および代数的独立性を示す事は数論において重要である. 本講演では, ベキ級数で与えられる関数に代数的数を代入した値の超越性および代数的独立性を調べる.

筑波大学数学談話会 (6月19日)

日時:6月19日(木曜日), 15:30--17:45 (15:00より tea )

場所:自然系学系 D棟 509

プログラム: (15:00--15:30 tea time)

15:30--16:30, 千原浩之 氏 (筑波大学)
題目:ユークリッド空間上のバーグマン変換と量子化
概要:ユークリッド空間上のバーグマン変換とよばれる積分変換は、関数をその超局所化を記述する正則関数へ変換してくれるので、超局所解析や準古典解析における有力な手段になっている。一方、この種の理論は信号処理等の応用分野の研究とも密接な関連がある。本講演では、まずこれらの話題をまとめて概観する。さらに、講演者の仕事や最近取り組んでいる課題を紹介する。

16:30--16:45 休憩

16:45--17:45, 平山至大 氏 (筑波大学)
題目:可微分力学系のエルゴード理論
概要:多様体上の保測な可微分写像の反復合成が生成する力学系のエルゴード理論について概説する.特に,エルゴード性やエントロピーの生成的な正則性に関する話題を紹介したい.

数学談話会(12月26日)

日時:2013年12月26日(木)15:30~16:30(15:00からお茶の時間)
場所:自然系学系棟D509

講演者:斉藤秀司 氏 (東京工業大学)
講演題目:Existence conjecture for smooth sheaves on varieties over finite fields

概要:
This is a joint work with Moritz Kerz. Let $$X$$ be a smooth variety over a finite field $$\mathbb{F}_q$$. For an integer $$r>0$$, let $${\cal S}_r(X)$$ be the set of lisse $$\overline{\mathbb{Q}_\ell}$$-sheaves on $$X$$ of rank $$r$$ up to isomorphism and up to semi-simplification. Let $$Cu(X)$$ be the set of normalizations of integral curves on $$X$$. Let $${\cal S}k_r(X)$$ be the set of systems $$(V_Z)_{Z\in Cu(X)}$$ with $$V_Z\in {\cal S}_r(Z)$$ such that
$$(V_Z)_{|Z\times _X Z'}=(V_{Z'})_{|Z\times _X Z'}$$ for $$Z,Z'\in Cu(X)$$.
The question is how to determine the image of the restriction map
 $$\tau:{\cal S}_r(X)\to {\cal S}k_r(X)$$,
i.e. when a system $$(V_Z)_{Z\in Cu(X)}$$ glues to a lisse $$\overline{\mathbb{Q}_\ell}$$-sheaf on $$X$$. We explain a conjecture of Deligne on the problem which describes the image in terms of a ramification condition at infinity and prove the conjecture in case $$r=1$$.

数学談話会(12月5日)

日時:2013年12月5日(木)15:30~17:00(15:00よりお茶の時間)
場所:自然系学系棟D509

講演者:松崎拓也 氏 (国立情報学研究所)
講演題目:計算機が数学試験問題を解く

概要:
国立情報学研究所を中心として進めている「ロボットは東大に入れるか」プロジェクトでは、
「人工知能」としてまとめられる諸技術に対する総合的ベンチマークとして、
様々な科目の大学入試問題を計算機で直接解くことに挑戦している。

本発表では、プロジェクトにおける数学試験問題に対する取り組みについて紹介する。
「数学問題を解く」とは何か、という問題定義から始め、自然言語で記述された問題を
論理式へ翻訳し、数式処理との接合により解を得るまでの流れについて述べる。

数学談話会(11月7日)

日時:2013年11月7日(木)15:30~16:30
場所:自然系学系棟D509

講師:大本亨 氏 (北海道大学)
講演題目:Image and discriminant Chern classes of stable maps

概要:In classical algebraic geometry,numerical characters of projective varietieswere extensively studied by means of enumeratingsingular points of naturally associated maps.A modern unified approach to such enumerative problemsis the theory of Thom polynomials based onthe classification of singularities of maps (Thom-Mather theory).In this talk I will introduce a new branch of the theory,in which we replace counting singular pointsby computing (weighted) Euler characteristics.In particular, I will talk about a universal formulaon (singular) Chern class of image varieties of maps.

●15:00からお茶の時間です。こちらもぜひご参加ください。また講演終了後、懇親会を予定しております。どうか奮ってご参加ください。

数学談話会 竹内耕太氏 (10月24日)

日付: 2013年10月24日(木) 15:30~16:30
場所: 自然系学系棟 D509

講演者:竹内 耕太 氏 (筑波大学)
講演題:ハイパーグラフの組み合わせ論とモデル理論

概要:モデル理論では数学的構造(群、環、体、グラフ、順序構造など)を安定性と呼ばれる指標を用いていくつかのクラスに分類する。構造Mが安定であるというのはきわめて大雑把に言うと、構造の自己同型全体のなす群による作用を考えたとき、その作用に関する軌道があまりたくさんは存在しない、という風に説明できる。
講演者は最近、安定性のひとつのクラスであるn-dependent theoryに対し、ハイパーグラフの組み合わせ論を用いて二つの特徴づけを与えた。証明で使われた道具はいくつかの分野で関連する話題が研究されており、そのような周辺の話題も交えながら研究成果について解説したい。

キーワード:universal minimal flow, Ramsey property, VC-dimension, Turan problem, indiscernibles

筑波大学数学談話会 (7月18日)

日時: 2013年7月18日(木)15:30-17:00 ※15:00からティータイム
場所: 自然系学系棟D509

講演者: 土岡俊介 氏 (IPMU)
講演題目: 対称群のモジュラー表現論の最近の話題について

概要:
2007年から2008年の間に、RouquierとBrundan-Kleshchevによって、正標数の対称群の群代数には、非自明な次数付き代数の構造が入ることが示された。前半でその背景や意義を解説し、後半でその射影表現類似に関する柏原正樹氏とSeok-Jin Kang氏との共同研究について解説する。

数学談話会のお知らせ (5月16日)


以下のように数学談話会を開催します。皆様のふるってのご参加を
お待ちしております。

日時: 2013年5月16日 15:30~16:30 (※15:00よりティータイム)
場所: 自然系学系D棟509号室
講演者: 青木敏氏 (鹿児島大学)
講演題目: 計算代数手法の実験計画法への応用
講演概要: グレブナー基底理論の統計学への応用は、ここ20年ほどで急速に
注目を集め、計算代数統計として新たな一分野となりつつある。
実験計画法は、その最も初期の話題のひとつである。特に、多因子
の一部実施計画の理論については、計画点の集合を、それを零点とする
多項式の集合(計画イデアル)として表現し、その生成系やグレブナー
基底に注目することにより、さまざまな結果が得られている。
本講演では、主に2水準、3水準の一部実施計画で得られたデータの
解析に、グレブナー基底の理論が利用できることを示した、講演者らの
最近の研究を紹介する。
 

筑波大学数学談話会 (1月24日)

以下のように数学談話会を開催いたします。皆様のご参加お待ちしております。

15:00 ~ 15:30  ティータイム

15:30 ~ 16:30  秋山茂樹氏 (筑波大学)
講演題:置換規則力学系の Pisot 予想 (Substitutive dynamical system and Pisot conjecture)
講演概要: 有限文字の生成するモノイドの自己準同型のことを置換規則という。置換規則により生成される無限語のシフト全体の閉包のなす空間は、シフト作用により位相力学系となる。このような力学系は、自己誘導構造を持つ最も簡単なモデルとして多くの関心を集めてきた。今回のお話では細部にこだわらず、どうしてこのような力学系が面白く、他の数学とも関連しているのかを主に例を通じて説明しようと思う。
 最後にこの力学系の歴史的問題である Pisot 予想について解説したい。

16:45-17:45 Scott Carnahan (筑波大学)
講演題: Monstrous Lie Algebra
講演概要: The Monster Lie Algebra is an infinite dimensional Lie algebra with an action of the monster simple group. It played an essential role in the Monstrous Moonshine conjecture, which establishes a connection between the representation theory of themonster and the theory of modular functions on the complex upper half-plane. There is a family of similar Lie algebras, parametrized by elements of the monster, and the Monster Lie algebra corresponds to the identity.  
These new Lie algebras can be used to establish cases of the Generalized Moonshine conjecture.

筑波大学数学談話会 (12月6日, 古田 幹雄 氏)

日時: 12 月 6 日 (木) 15:30 ~ 16:30    ※ 15:00 からお茶の時間です。
場所: 自然系学系棟 D509

講演者: 古田 幹雄 氏 (東京大学数理科学研究科)
講演題:低次元トポロジーにおけるゲージ理論

講演概要:
低次元微分トポロジーの分野でゲージ理論と総称される3つの理論があります。それらの関連は現在活発に研究が進められています。講演の前半では、それら3つの理論を比較しながら紹介したいと思います。

3つの中で現在もっとも強力とされるものはHeegaard Floer理論です。しかし一方で、その他の二つ、Donaldson理論(=ASD-Yang-Mills方程式を用いる理論)、あるいは Seiberg-Witten理論(=monopole方程式を用いる理論)を用いることによってアプローチできるが、 Heegaard Floer理論では現在アプローチの手段がないような現象も存在します。講演の後半では、そのような現象を紹介したいと思います。

筑波大学数学談話会(11/29 成瀬弘氏)

筑波大学数学談話会のご案内です。

日時: 11/29 (Thu) 16:00 ~ 17:30      ※ 15:30 よりお茶の時間。

場所:
自然系学系D棟509

講師:
成瀬 弘 教授 (岡山大学)

タイトル:
古典群のループ空間の(コ)ホモロジー環のシューベルト基底

概要:
A型のループ空間 $$\Omega SU$$のホモロジー・コホモロジーは,対称関数の空間と同一視できることが良く知られている。ここでは,B,C型の場合に Schur のP-,Q-関数を変形することで,K-理論や一般コホモロジーの場合に対称関数でシューベルト基底を作るという試みについてお話する。(中川征樹氏との共同研究に基づく。)

筑波大学数学談話会(9月27日)

当数学域の青嶋 誠 教授と矢田和善 助教が,
   Abraham Wald Prize in Sequential Analysis  および
  日本統計学会研究業績賞
を受賞しました。それを記念して談話会を開きます。

日時:9月27日(木)15:30 ~ 16:30
※ 15:00 ~ 15:30 にお茶の時間があります。
場所:自然系学系D棟509号室

タイトル:たった30個の標本で,10000次元のデータを,どこまで精密に解析できるか?

講演概要:近年,高次元小標本のデータ科学が,理論と応用の両面から世界中で活発に研究されています.ゲノム科学・情報工学・金融工学に端を発する高次元小標本データは,新しいタイプのデータ科学を生み出そうとしています.
 従来の統計学は,大標本を前提とするために,高次元小標本のデータ解析に精度を保証する解を与えてくれません.そのことは,最近まで正確には知られていませんでした.高次元小標本のデータ科学には,従来の統計学の枠組みを超えた,新しい発想が必要になります.
 本講演では,10000次元を超える高次元データを,100にも満たない僅かな標本数で扱います.上手に扱わないと,高次元データからはノイズしか聞こえてきません.しかし,本来,高次元データは,豊富な情報を内包しているはず.高次元小標本におけるデータ空間の特性を理解して,適切に解析を行えば,高次元データは驚くほど豊かな情報を語ってくれるのです.
 当日は,高次元小標本のデータ科学に高精度かつ高速な解析を行うために,青嶋・矢田が一連の共同研究で構築した理論と方法論について,アイデアの幾つかをなるべく平易に説明します.

筑波大学数学談話会のお知らせ (6/21)

次回の「筑波大学数学談話会」は,以下の通りです。

日時: 6月 21日 (木) 15:30 ~ 16:30 (※ 15:00 より,ティータイム)
場所:自然系学系 D棟 509号室
講演者:丹下 基生氏(筑波大学・助教)
タイトル:4次元多様体の記述法とその応用
概要:微分可能多様体はモース理論に基づき、ハンドル分解することができる。4次元の場合のハンドル分解とは3次元球面内の枠付き絡み目に対応する。その絵をハンドル図式という。この講演では、ハンドル図式を見ることで4次元多様体を体感することと、その図式を用いて得られる結果について話す。

筑波大学数学談話会のお知らせ (5/24)


今年度最初の談話会を以下のように開催します。皆様のお越しをお待ちしております。

5月24日(木) 15:00-17:30
自然系学系棟D509
講演者:有家 雄介 氏 (筑波大学)
      中島 誠   氏  (筑波大学)

講演題・講演概要

 有家 雄介氏  頂点作用素代数のフュージョン則について
            概要:頂点作用素代数の3つの加群の間のintertwining operatorの空間の次元を
                フュージョン則と呼ぶ. フュージョン則は射影直線上の3点に加群を対応させた
                共形ブロックの空間の次元と等しいことがY. Zhuにより示されている.
                本講演ではintertwining operatorにlog項を付け加えたものの空間と,
                射影直線上の3点に対数的と呼ばれる加群を対応させたときの共形ブロックの
                空間が同型となることを紹介する.時間が許せば, フュージョン則の計算の
                具体例についても紹介したい.


 中島 誠氏   有向パーコレーションの相転移に関する話題
           概要:パーコレーションと呼ばれる確率模型は様々な物理現象の中に見られ、
                 統計力学の中で重要な役割を果たしています。今回の講演では有向
                 パーコ レーションに現れる相転移のそれぞれの相での性質や相転移に
                 関する最近の発展をお話しします。必要な知識は中心極限定理です。

・ 時間には多少変更の可能性がありますこと、ご容赦ください。